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In this work, we will report BOUT++ simulations for H-mode pedestal instabilities and 

turbulent transport. For DIII-D H-mode discharges, the BOUT++ peeling-ballooning ELM 

model including electron inertia was used to analyze the ideal linear stability and ELM 

dynamics. The beta scan is carried out from a series of self-consistent MHD equilibria 

generated from EFIT by varying pressure and/or current. For typical tokamak pedestal 

plasmas with high temperature and low collisionality, we found that the collisionless 

ballooning modes driven by electron inertia are unstable in the H-mode pedestal and have 

a lower beta threshold than ideal peeling-ballooning modes, which are the triggers for 

Edge Localized Modes. Thus, collisionless (electron inertia) ballooning modes might be 

responsible for H-mode turbulence transport when the pedestal is stable to peeling-

ballooning modes. BOUT++ calculations also show that NSTX Elm stability boundaries 

are sensitive to flow shear profile. Attempts are underway to calculate nonlinear 

turbulence and transport in H-mode discharges due to the non-ideal effects.  

Abstract 



3 

The Nonlinear System of Equations for Simulating    

Non-Ideal MHD Peeling-Ballooning Modes 

This simple set of reduced two-fluid equations effectively bypasses the issue of the gyroviscous 

cancellations in simulations while the important diamagnetic effect is retained in the second term 

of the generalized vorticity expression. 
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The effect of transport coefficients  

on linear P-B instabilities. 
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 Lundquist Number (S) is a 
dimensionless ratio of the 
resistive diffusion time to the 
Alfvén time 
– S ~107 in C-Mod EDA pedestal 

Separatrix 

Open field lines 

Zero Current 

beyond Separatrix 

Pedestal 

C-Mod Equilibrium EDA H-Mode Parameters       

used as BOUT++ Input (1110201023.00900) 



 ARv
S 0

Davis, et al, UP9.00008 
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BOUT++ Calculations Show C-Mod 

EDA H-Modes Resistively Unstable 

      BOUT++ calculations show that 

Diamagnetic Effects Damp Higher Mode 

Numbers, yielding the growth rate peaks 

at n=25, consistent with measurements. 

 

Preliminary Nonlinear Simulations have 

begun --- Mode Saturation and Turbulent 

Steady-State have been Observed. 

Comparisons with experimental 

measurements will begin. 

Davis, et al, UP9.00008 
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BOUT++ simulations for DIII-D ELMy H-mode 

  shot #131997 at reduced J|| 

Ideal MHD stability boundary is consistent with infinite-n BALLOO code 

Inclusion of e- inertial eliminates the stability boundary 

* 

* 
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BOUT++ simulations for DIII-D ELMy H-mode 

  shot #131997 at reduced J|| 

 

Inclusion of e- inertial eliminates or reduces the ion diamagnetic stabilization 

Varyped: P0,v17=0.6P0,exp, P0,v69=P0,exp 

Growth rate (gtA) 

Varyped, v17 Varyped, v69 

Growth rate (gtA) 
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BOUT++ nonlinear simulations for DIII-D H-mode 

  shot #132016 at t=3034ms & Ip=1.49MA 

y y 

qMHD 
P0(Pa), pressure 

J||0/100(A/m2), parallel current 
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BOUT++ nonlinear simulations for DIII-D H-mode 

  shot #132016 at t=3034ms & Ip=1.49MA 

Inclusion of e- inertial eliminates the stability boundary 

dprms, v10 
dprms, v10 

dprms, v5 

dprms, v5 

P0,v5 

P0,v10 

J||0,v10 

J||0,v5 

Time ( 1/tAlfeven) y 

Varyped: P0,v5=P0,exp, P0,v10=1.5P0,exp 
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BOUT++ nonlinear simulations for DIII-D H-mode 

  shot #132016 at t=3034ms & Ip=1.49MA 

Keeping ballooning mode eigen-function from linear to nonlinear phase 

20dprms, v10/B
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20dprms, v10/B
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BOUT++ nonlinear simulations for DIII-D H-mode 

  shot #132016 at t=3034ms & Ip=1.49MA 

X-point magnetic shear limits the poloidal extent of perturbation on low field side. 
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BOUT++ simulations for one of the latest designs of the ITER 15 MA 

inductive ELMy H-mode scenario (under the burning condition) 

  Simulations starting from equilibrium generated by the CORSICA code.  

s
e
p
a
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• Marginal unstable pedestal case, Tped=5.5keV, nmax=15 

• The calculations impact previous ITER ELMy H-mode scenario design as it was 

based on the pedestal height Tped=4.5keV 

X.Q.Xu, B.D.Dudson, P.B.Snyder, M.V.Umansky, H.R.Wilson and T.Casper, Nucl. Fusion 51 (2011) 

http://upload.wikimedia.org/wikipedia/commons/c/cf/ITER_Logo_NoonYellow.svg
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BOUT++ simulations for one of the latest designs of the ITER 15 MA 

inductive ELMy H-mode scenario 

 It is numerical challenge to simulation ITER divertor 

geometry, requiring high resolutions nx > 1000, ny>100, 

even for linear mode. Ideal MHD 

Ideal MHD 

X.Q.Xu, B.D.Dudson, P.B.Snyder, M.V.Umansky, H.R.Wilson and T.Casper, Nucl. Fusion 51 (2011) 

http://upload.wikimedia.org/wikipedia/commons/c/cf/ITER_Logo_NoonYellow.svg
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BOUT++ simulations show radial and poloidal mode structures and  

for the ITER 15 MA inductive ELMy H-mode scenario 

X.Q.Xu, B.D.Dudson, P.B.Snyder, M.V.Umansky, H.R.Wilson and T.Casper, Nucl. Fusion 51 (2011) 

http://upload.wikimedia.org/wikipedia/commons/c/cf/ITER_Logo_NoonYellow.svg
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BOUT++ Calculations Show NSTX discharge 

129032 Resistively Unstable 

With assumption that VExB=Vdiam, all modes are stabilized.  

The detailed flow profile does matter for this discharge 
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Magnetic Reconnection and Pedestal Collapse during ELMs 
Equilibrium current and pressure profiles used as BOUT++ input 

Major Radius R(m) 

Z(m) 
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Flux-surface-averaged pressure profile 2m0 <P>/B2 vs S with SH=1012                 

low S -> large ELM size, ELM size is insensitive when S>107  

(1) a sudden collapse:  P-B modes -> magnetic reconnection -> bursting process 

(2)  a slow backfill as a turbulence transport process 

ELM size= Wped/ Wped 

 

Wped= the ELM energy loss 

 

Wped =pedestal stored energy 

R1 R2 

X.Q.Xu, B.D.Dudson, P.B.Snyder, M.V.Umansky, H.R.Wilson, Phys. Rev. Lett. V105 175005 (2010) 
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For lower S (106), the reconnection region grows 

and the pedestal collapse becomes much larger. 

Sauppe, et al, JP9.00098 
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Role of the hyper-resistivity  

on nonlinear ELM simulations. 

X.Q.Xu, B.D.Dudson, P.B.Snyder, M.V.Umansky, H.R.Wilson and T.Casper, Nucl. Fusion 51 (2011) 
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Equilibrium flow shear model 

Xi, et al, JP9.00103 
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Equilibrium flow shear can be  

a double-edged sword on P-B modes 

• The flow shear plays the same role as 

diamagnetic stabilization for ideal MHD 

case without diamagnetic term. 

Xi, et al, JP9.00103 

(gKH-gw/o KH)/gw/o KH 

• Kelvin-Helmholtz drive mainly 

destabilize intermediate n modes: 

n=10~30.  
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5-field Peeling-Ballooning model 

• In order to investigate the separate effects of density and temperature 

effect, we extend the 3-field simple P-B model into 5-field model by 

separating the total pressure into density electron and temperature 

Xia, et al, JP9.00102 
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The strong stabilizing density effect on P-B 

modes is due to ion diamagnetic drift 

• For ideal MHD, n0 does not  

 affects the normalized linear 

growth rate.  

• With diamagnetic effects,  
– low density results in more 

stable  high-n modes. 

n0=constant in x, Te0 and Ti0 vary in x 

Xia, et al, JP9.00102 


